From a comment by Tamas Gabal:

“I also agree that many 'applied' areas of mathematics do not have famous open problems, unlike 'pure' areas. In 'applied' areas it is more difficult to make bold conjectures, because the questions are often imprecise. They are trying to explain certain phenomena and most efforts are devoted to incremental improvements of algorithms, estimates, etc.”

The obsession of modern pure mathematicians with famous problems is not quite healthy. The proper role of such problems is to serve as a testing ground for new ideas, concepts, and theories. The reasons for this obsession appear to be purely social and geopolitical. The mathematical Olympiads turned in a sort of professional sport, where the winner increases the prestige of their country. Fields medals, Clay’s millions, zillions of other prizes increase the social role of problem solving. The reason is obvious: a solution of a long standing problem is clearly an achievement. In contrast, a new theory may prove its significance in ten year (and this will disqualify its author for the Fields medal), but may prove this only after 50 years or even more, like Grassmann’s theory. By the way, this is the main difficulity in evaluating J. Lurie's work.

Poincaré wrote that problems with a “yes/no” answer are not really interesting. The vague problems of the type of explaining certain phenomena are the most interesting ones and most likely to lead to some genuinely new mathematics. In contrast with applied mathematics, an incremental progress is rare in the pure mathematics, and is not valued much. I am aware that many analysts will object (say, T. Tao in his initial incarnation as an expert in harmonic analysis), and may say that replacing 15/16 by 16/17 in some estimate (the fractions are invented by me on the spot) is a huge progress comparable with solving one of the Clay problems. Still, I hold a different opinion. With these fractions the goal is certainly to get the constant 1, and no matter how close to 1 you will get, you will still need a radically new idea to get 1.

It is interesting to note that mathematicians who selected the Clay problems were aware of the fact that “yes/no” answer is not always the desired one. They included into description of prize a clause to the effect that a counterexample (a “no” answer) for a conjecture included in the list does not automatically qualifies for the prize. The conjectures are such that a “yes” answer always qualifies, but a “no” answer is interesting only if it really clarifies the situation.

Next post: Graduate level textbooks I.